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ABSTRACT

Previous experimental studies using excised, perfused rabbit intestine in a sealed water tank,
have provided direct visual observation that air bubbles produce local, violent, intestinal wall
motion when they collapse under blast loading and that injury directly correlates with those
motions. Measurements of the pressure within the bubble was shown to correlate with the motion
of the wall and with injury. It was speculated that this pressure is an indirect measure of the stress
in the wall tissue and therefore could be a means of quantifying the injury process.

An analytical model of the dynamics of a bubble within an elastic membrane has been
developed. Surrogate models, using materials with properties similar to that of intestine wall, but
arranged in simpler geometric configurations, have been used to collect data on the dynamic
process. The model results are compared and discussed.
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1. INTRODUCTION

Injury to the gastro-intestinal tract is one of the primary biological effects of strong blast
exposure. The threshold for injury appears to lie between that for the larynx and the lung and
therefore may be a critical element in defining Damage Risk Criteria for occupational exposure.
In combat circumstances, this injury may be debilitating.

Little is known about the mechanics of the injury process or its relation to external blast
characteristics. In fact, little is known about the pressure environment within the abdomen during
blast loading. Laboratory experiments at JAYCOR using perfused, small animal intestine have
provided most of our current understanding of the phenomena [1].

In those tests, the static bursting strength of various sections of rabbit intestine were
determined. There seems to be little systematic variation with location along the gastro-intestinal
tract or with animal weight, age, or sex. The material properties were in agreement with Yamada
[2]. The most prevalent form of injury is hemorrhage without associated rupture, so that it is likely
that threshold injury is controlled by the failure of the vascular system.

Dynamic experiments were then conducted in which isolated sections of intestine were
placed in a water filled chamber and exposed to an external blast loading. Damage to the intestine
could be directly correlated with the location of air bubbles within the section. Violent motion of
the tissue was observed and, during the overexpansion phase, rupture sometimes occurred.

Tests made with balloons filled with air and water and immersed in water produced a similar
dynamic response. High speed movies showed surface deformations that were primarily limited to
the local region at the bubble. As the viscosity of the interior fluid was increased, the deformations
became even more localized. Pressure probes placed inside the bubble showed that the surface
motion could be correlated with the variations in the pressure time histories. This correlation
suggested that bubble pressure measurements could be used to understand the injury process.

Interpretation of the observed damage in isolated intestine sections was clouded by the
differences from the in vivo situation. The lack of a blood supply causes the intestine to
deteriorate rapidly and, of course, eliminates the possibility of observing hemorrhage.

A surgical technique was developed by Yu and Vasel that allowed an isolated rabbit
intestine to be oxygenated by the animal's own cardiopulmonary system. The perfusion results
from connecting the abdominal aorta to the cranial mesenteric artery and connecting the portal
vein to the caudal vena cava. The intestine can be maintained in a nearly in vivo state while being
subjected to blast loading in a water chamber.



Results obtained with the previous isolated preparation were confirmed and thresholds of
hemorrhagic injury at lower levels were observed. Occurrence of injury was not completely 0
correlated with the peak chamber pressure, however, suggesting that local conditions were
important.

Direct measurement of the stress in the wall section proved to interfere with the dynamical
motion and a noninvasive technique was sought. Pressure transducers placed within the bubble
showed the same behavior as had been observed in the isolated preparat;rns. Moreover, the
pressure differential between the bubble and a position in the fluid near the bubble seemed to
correlate better with injury.

As a result of these findings, a relation between air bubbles and injury was proposed. The
pressure differential across the membrane gives a measure of the dynamics, hence the stress in the
tissue. An analogy was drawn with the relation between surface tension and pressure difference in
a bubble. The amount of test data on which this concept is based is small, however, and there are
many uncontrolled factors in dealing with the entire gastro-intestinal tract. A simpler circum-
stance was sought in which to develop and test these ideas.
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2. SURROGATE EXPERIMENTS

The objective of the experiments is to provide data on gas and lumen dynamics under
controlled circumstances so that the hypotheses proposed can be tested. At the same time, we
want to perfect techniques for measuring the tissue dynamics that can be used in future animal
tests.

Lamb cecum sections, in a commercially available and preserved form, were used as the
surrogate material. Tests were run to demonstrate that they had material strengths comparable to
that of rabbit intestine. A fixture was designed to be placed in the water chamber, holding the
section at a circular ring. The fixture formed an enclosure surrounding the membrane with flow
holes at the side. See Figure 1. By adjusting the volume of water and gas under the membrane,
the curvature could be varied continuously from convex to concave and the bubble could be given
any volume.

Pressure probes were mounted at fixed locations on either side of the initial membrane
position. Pressure measurements were also taken in the chamber, away from the fixture.

As the intensity of the blast was increased, as measured by the peak chamber pressure, the
maximum pressure reached inside the bubble and the frequency of bubble oscillation increased.

The differential pressure between the inside and outside probes also increased with
intensity. For positively curved membranes (bubble on the concave side) the differential pressure
first goes negative before rising to its positive maximum. For negative curvature (bubble on the
convex side), the curve reverses in sign. Rupture of the membrane usually occurred in this case.

The differential pressure maximum did not vary significantly with the size of the bubble, but
it decreased as the membrane was stretched flatter. The differential pressure also decreased as the
initial bubble pressure was increased.

These observations form a basis on which to de, elop and test the analytical model discussed
in tf e next section.
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Figure 1. Schematic of single curvature membrane test fixture.
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3. ANALYTICAL MODEL

DYNAMICS OF THE LIQUID MOTION

We use the statement of energy conservation to develop a dynamical equation of motion.
The rate of change of Kinetic energy in the liquid outside the membrane, E, is equal to the work
done by pressure forces at the interface and at the far boundar-es less the rate at which energy is
dissipated within the liquid flow.

dEd-_ (pAv) - (pAv)- E (1)

where the kinetic energy is given by

i 2

E-fff I PLv dV (2)

A dissipation rate proportional to the kinetic energy, as occurs in turbulent flow, has I-een
assumed. The pressure at the interface on the liquid side is equal to the pressure in the gas, PG,
less the differential pressure caused by the tension in membrane, ,pM,

Pi = PG - 5 PM • (3)

The contribution of the membrane depends on its material properties and its deformation.

We imagine a coordinate system based on the liquid in which one coordinate direction, x, is
parallel everywhere to the flow. The flow area normal to the coordinate x is designated A(x). The
liquid velocity is then always normal to A so that the statement of mass conservation becomes

PL v(x) A(x) = constant . (4)

Since the liquid is assumed to be incompressible and since the geometries must be
conformal to the membrane position, then

v(x) A(x) = viA i  (5)

The differential volume in this coordinate system is given by

dV = A dx . (6)

Combining thc above relations gives

* 5



2

EfB 1p~ V'A] Adx0-2L A d
I.

i PL(ViA)2 fB dx (7)2 L _ A(x)(7

X.
1

The rate of change of the energy is then

dE d (A B dx 1 2 d B dx
dt P(VAi) (viAi) A(x) 2 L( ) dtJ A(x)x x

"(V A ) - (V A) Apx + 2L(V A Ai
xx

A(vBA- A) "B d A 1 2

L ii d 11A(x) 2t(VA) {ij

xi

The rate of change of the volume flux is 0

d dv. dAi
(v A - i + v -

dt i i i dt i dt

dv. dx.

-A -+ vI-I -

i dt i[dxji dt

-A d- + 2i (9)
id t i dx J

Combining (7)-(9) with (1) yields the equation of motion

dvi 2__
d _ + R v_ 6 - pB)/L alvi  (10)
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where PB is the applied pressure at the far boundary and the inertia and kinematic coefficients are
given by

I - A. fB dx(11)

R dAj IxB dx 1
j AJ x (12)

:.

DYNAMICS OF THE BUBBLE MOTION

The rate of change of the bubble volume is equal to the volume flux in the liquid

dVb
-- - A.v. 

(13)
dt i i

since the liquid is incompressible. Because the blast loadings are so rapid, we assume that process

is adiabatic within the bubble so that for an ideal gas

GVb - PG (0) (14)

Finally, the pressure differential due to the membrane must be found from experiment. For an
elastic material

6pM = 6PM(Ab) (15)

GEOMETRIC PARAMETERIZATION

Various flow geometries can be simulated through the choice of V(x). For example, a
spherical bubble in an infinite medium would be characterized by

4 3V(x) - - w x (16)

xB - c (17)

* 7



Using (6), (11), and (12) yields

A(x) - 4x2

I -x

R 3

2

which produces Rayleigh's equation [3]

dv 3 2 PG - POO
dt 2 PL

Similarly, a plug of water of radius r and length L yields

2
V(x) - rr x (19)

xB - x. + r (20)

so that

2
A(x) - 2

I -L

R
2

and the dynamical equation

dvi 1 2 Pa PLL r: 2vt-(21)08LL
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For the surrogate experiments described earlier, the appropriate geometry is a spherical
sector anchored at a ring of radius r I with an outer boundary at a radius r2 . Then

V(x) - x (3r I + ] (22)

XB - r2  (23)

which yields

* A(x) - ' (r, + x2

2 2

[r+ x  tanir2 tan-l

R 2x tan- ]" _ tan- l,

LIQUID PRESSURE FIELD

Because the surrogate experiments collected pressure data at points within the liquid it is
desirable to form an expression for the pressure field. If the previous derivation were carried out
for a region of liquid bound by x and xB, then we would have found

B dx d (PLA) - 1 2 2 (24)
A(x) dt ( B

Using (5) and rearranging the left-hand side of (24) yields

d d 1 2
A(x) (x) d (PLViAi) - (p- pB) + PLv (25)

* 9



while the same form at the interface is

1 d 1 2
I L -pC+Apv (26)A. 1i dtP~ii (PG - SPM - PB ) + 2PVi (6

1

Taking the ratio of (25) and (26) and solving for p yields

1 pjy2 + G + 2)[1 (27)
p(x) - PB - P + - 6PM - PB PLVi I(27)

NUMERICAL SOLUTION ALGORITHM

The set of coupled ordinary differential equations for the position and velocity of the
membrane coordinate is solved by a fifth-order Runge-Kutta algorithm [4]. Time steps were taken
to be 0.05 msec and variations were made to assure that accurate solutions were being obtained.
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4. MODEL VALIDATION

PARAMETER ASSIGNMENTS

For the surrogate test fixture described earlier, the following geometric parameters apply.
The 5 cc bubble forms a spherical section with base radius of 1.68 cm and height 1.00 cm. Based
on the previous experimental observations, we assume that the membrane distorts only in the
region of the bubble and maintains the geometry of a spherical section. The partly enclosed fixture
has an effective radius of 1.91 cm as measured from the bubble center. We then can use the
geometry described by (22) and (23) with the values

rI = 1.68 cm

r2 = 1.91 cm

x(0) = 1.00 cm

The differential pressure in the membrane is taken from tests data to increase at a rate of 3
psi/cm. The flow is assumed to have no damping.

For the negative curvature runs, we have

r -- 1.91 cm

r2 = 1.91 cm

x(0) = -1.91 cm

The chamber pressure is taken from the measured trace for each shot and is characterized
by a peak value and duration to the first zero crossing. The durations varied from 4.4 to 5.0 ms.

DISCUSSION OF RESULTS

Figure 2 compares the bubble pressure time histories for a series of tests in which the
chamber pressured varied from 27 to 116 psig. The plots are not to scale so only shape can be
compared here. There seems to be generally good agreement on the number and shape of peaks.

The increasing oscillation frequency with blast intensity is captured.

Figure 3 shows the quantitative comparison of these results. The decrease with intensity of
the time between peaks is accurately predicted by the model as is the first maximum and minimum
in the trace. At high intensities, the calculation tends to over predict the second and third maxima.

11



27 psi

.0
55 psi

•0

65 psi

79 psi

116 psi

Figure 2. Comparison of calculation and measurement of bubble pressure time
histories. Membrane has positive curvature with a bubble volume of 5 cc.
Axes are not to scale so only W can be compared.
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Figure 3. Comparison of calculation and measurement of bubble pressure extrema
parameters for the conditions shown in Figure 2.
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A review of the experimental data revealed that the membrane struck the inside transducer in
these cases. The impact may have slowed the collapse process and caused a smaller peak to be
reached.

Figure 4 compares the bubble pressure time histories for the cases of rositive and negative
curvature in the membrane. The change in frequency is captured. Figure 5 shows the calculated
pressure differential between the inside and outside transducers. The dramatic reversal of the
trace reported in the experimental data is seen. Figure 6 presents the comparison of the
calculated and measured pressure differential maximum values. Agreement is only qualitative in
this case. Again, the impact with the inner transducer may have affected the results. However,
both 5 and 10 cc bubbles produced nearly the same differential pressures, confirming the
experimental observations.

The predicted bubble responses did not vary significantly with the assumed stiffness of the
membrane for the range of values measured, indicating that the pressure differentials are
primarily controlled by the flow dynamics in the water. Another evidence of this dependence was
that the response, especially the pressure differential, varied with the assumed flow geometry.
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DIFFERENTIAL PRESSURE

Positive Curvature Negative Curvature

Figure 5. Comparison of calculated differential pressure time histories for positive and
negative curvature of the membrane.
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Figure 6. Comparison of calculated and measured differential pressure maximum
values.
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5. CONCLUSIONS

The analytical model provides a reasonably good explanation of the observed dynamics of
the bubble. In future tests, it will be used to predict the response in a complex wave environment
and to anticipate membrane rupture. Eventually, these concepts will be employed in developing an
understanding of the mechanisms of gastro-intestinal injury in vivo.
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